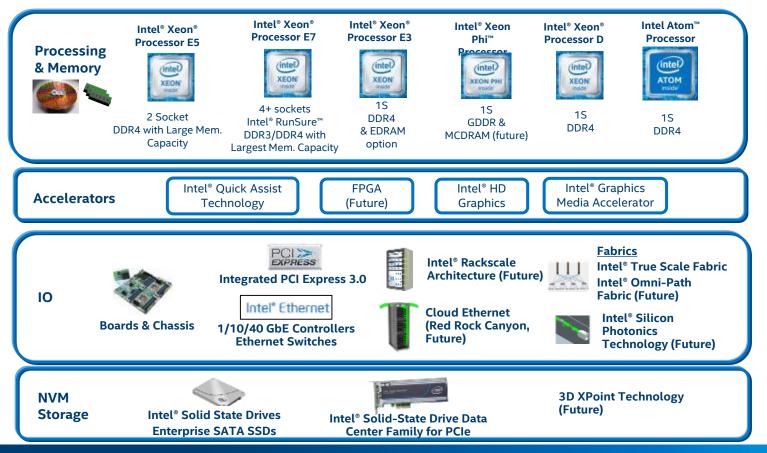


INTEL INNOVATION IN DATA Processing

Alexey Belogortsev | Technical Consultant EMEA


October 1, 2015

IT Challenges: What to Worry About Next?

Intel Data Center Hardware Building Blocks

Server Roadmap

Shipping Future Intel[®] Xeon Phi[™] - Optimized for new highly-parallel oriented 61 cores **Knights Landing** Intel[®] Xeon Phi[™] Coprocessor applications that utilize scale out clusters & highly integrated Co-processor. 1+ TFLOPs. 16GB GDDR Bootable, 3+ TFLOPs, Integrated Omni-Path power-dense cores Intel® Xeon® E7 & Itanium® (not shown) - Targeted at mission **Brickland Platform** critical & storage applications that value a scale up system with E7-8800/4800 v3 large memory capacity and advanced RAS. Itanium for additional 18 cores Future Xeon E7 4S+, AVX2, DDR3/4, 9.6 GT/s, 22nm OSes (HP-UX). **Grantley-EP Platform** Intel[®] Xeon[®] E5 - Targeted at a wide variety of server, storage, and E5-4600 v3 (4S) Future Xeon E5 (4S) networking applications that value a balanced system and 18 cores E5-2600 v3 performance/watt/cost Future Xeon E5 AVX2. DDR4. 9.6 GT/s. 22nm Intel[®] Xeon[®] E3 – Utilized for a variety of workloads that value **Denlow Platform** Future Xeon E3 Platform entry capabilities or integrated graphics including SMB servers, Broadwell 4 cores Future Xeon E3 network security, storage archival, & media streaming AVX2, DDR4, GT3 Gfx, 14nm Intel[®] Xeon[®] D - Targeted at mid-range network, storage, and **Grangeville Platform** Future Xeon D Platform embedded IoT & lightweight web applications that value fast cores Xeon-D 1500 8 cores **Future Xeon D** Integrated 10 GbE & chipset, 14nm & density Intel Atom[™] - Targeted at <u>entry networking</u>, <u>entry storage</u>, & **Edisonville Platform** Future Atom Platform lightweight web applications that value low power & density Atom C2000 8 cores Future Atom Integrated GbE & chipset, Quick Assist,14nm

intel

XEON.

XEON PH

ITANIUM

intel

ATOM

Intel[®] Xeon Phi[™] Product Family

Available Today Knights Corner (KNC)

Intel® Xeon Phi™ x100 Product Family

- 22 nm process
- Coprocessor only
- >1 TF DP Peak
- Up to 61 Cores
- Up to 16GB GDDR5

TBA Knights Landing (KNL)

Intel® Xeon Phi™ x200 Product Family

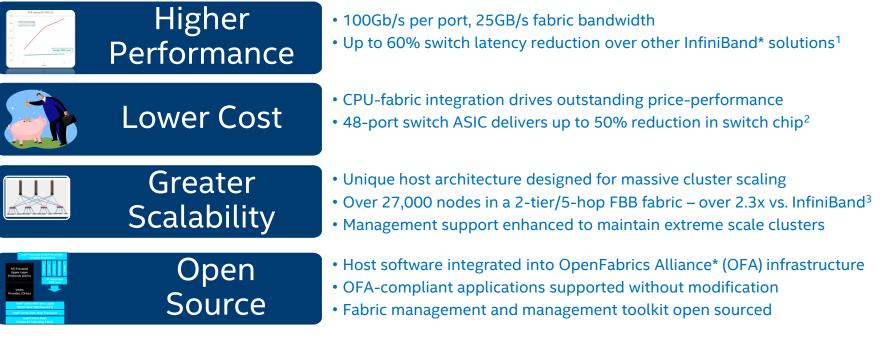
- 14 nm process
- Host Processor & Coprocessor
- >3 TF DP Peak¹
- Up to 72 Cores
- Up to 16GB HBM
- Up to 384GB DDR4²
- High BW memory
- Integrated Fabric

Future

Knights Hill (KNH)

3rd generation

- 10 nm process
- Integrated Fabric (2nd Generation)
- In Planning...

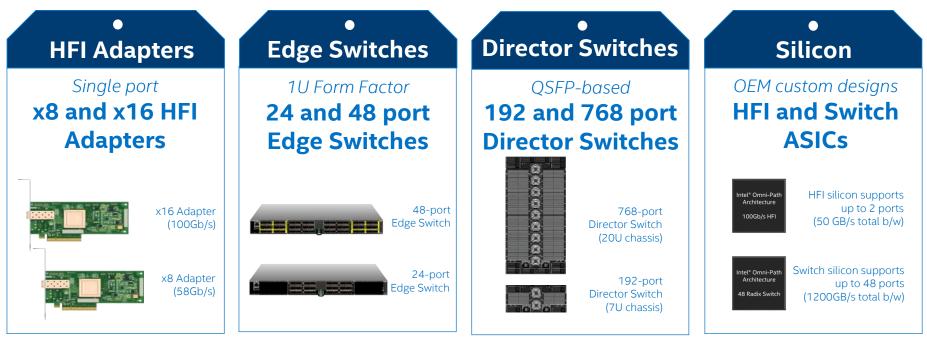


(intel)

All projections are provided for informational purposes only. Any difference in system hardware or software design or configuration may affect actual performance.

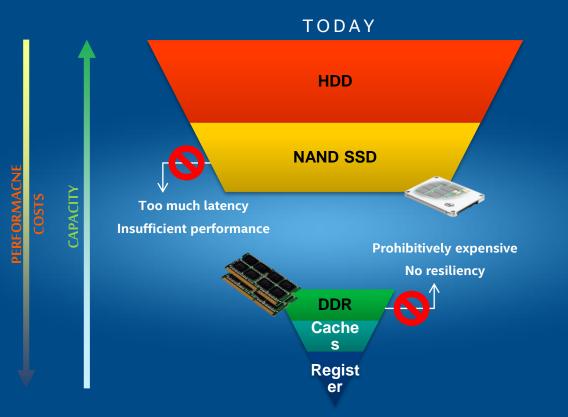
¹ Over 3 Teraflops of peak theoretical double-precision performance is preliminary and based on current expecations of cores, clock frequency and floating point operations per cycle.

INTEL® OMNI-PATH ARCHITECTURE IS CHANGING FABRIC ECONOMICS

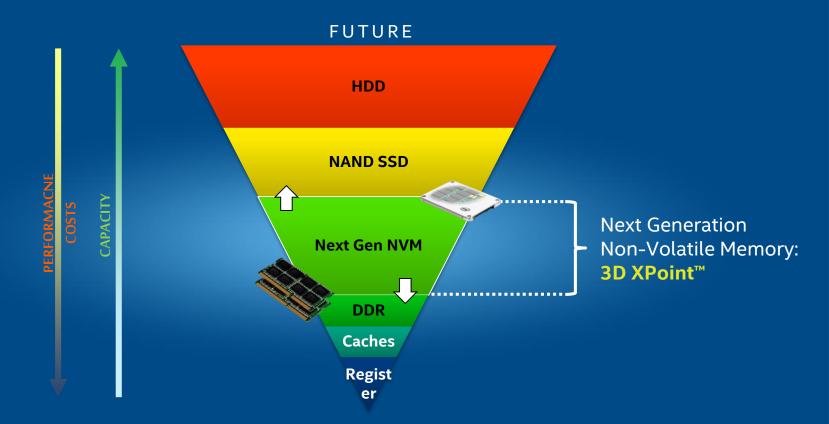


Minimizes fabric cost, maximizes cluster compute capability

¹ Latency reductions based on Mellanox CS7500 Director Switch and Mellanox SB7700/SB7790 Edge switch product briefs posted on <u>www.Mellanox.com</u> as of July 1, 2015 compared to, compared to, compared to Intel measured port-to-port latency (100ns) calculated from difference between back to back osu_latency test and osu_latency test through one switch hop. 10ns variation due to "near" and "far" ports on an Intel® OPA edge switch. All tests performed using Intel® Xeon® E5-2697v3 with Turbo Mode enabled. Cluster configuration is a 1024-node full bisectional bandwidth (FBB) Fat-Tree configuration (3-tier, 5 total switch hops), using a 48-port switch for Intel® Omni-Path cluster and 36-port switch ASIC for either Mellanox or Intel® True Scale clusters ² Reduction in up to ½ fewer switches claim based on a 1024-node full bisectional bandwidth (FBB) Fat-Tree configuration, using a 48-port switch for Intel® Omni-Path Cluster and 36-port switch ASIC for either Mellanox or Intel® True Scale clusters. ³ A 2.3X based on 27,648 nodes based on a cluster configured with the Intel® Omni-Path ASICs, as compared with a 36-port switch chip that can support up to 11,664 nodes.


INTEL® OMNI-PATH ARCHITECTURE PRODUCT LINE COVERAGE

Top-to-bottom Intel[®] OPA product line coverage HFI and switch ASICS that enable custom OEM solutions


CURRENT MEMORY HIERARCHY

For illustration only.

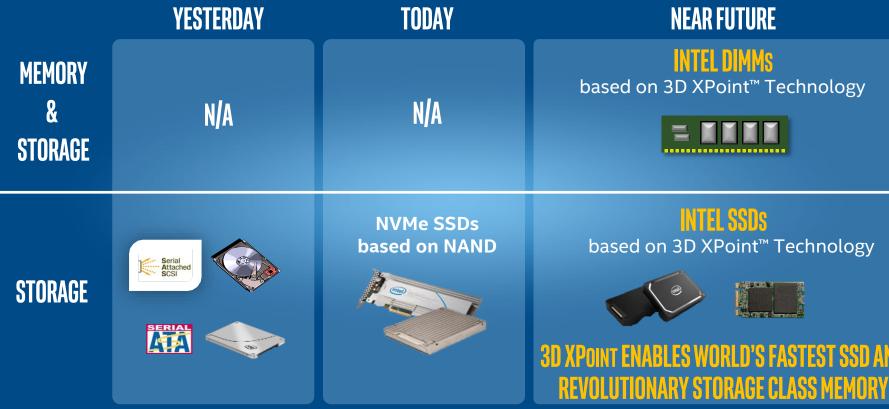
NEW MEMORY HIERARCHY

For illustration only, potential future options are targets, subject to change without further notification.

WHAT IS 3D XPOINT[™]?

Crosspoint Structure

Selectors allow dense packing and individual access to bits Breakthrough Material Advances Compatible switch and


memory cell materials

Scalable Memory layers can be stacked in a 3D manner

High Performance

Cell and array architecture that can switch states 1000x faster than NAND

INTEL® OPTANE™ PRODUCTS Based on Intel 3D XPoint™ Technology

experience what's inside[™]